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Introduction

“Classical reliability”
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» Use mainly failure data

> Population-based statistical approaches: average system (all systems are
equal), identical usage, average static environment, ....

> Blind on the system behavior between “new” and “failed”
» Static approaches in decision-making : maintenance, ....

» Difficult to take into account dynamically the item-to-item variability,
different usages, changes in the environment and operating load ... to
perform dynamic decision-making in maintenance, control, operation, ...

> Not fully adapted to new needs for dynamic reliability assessment,
centered on a given system, using online information
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» Condition Monitoring Systems (CMS), Health and Usage Monitoring
Systems and Operational Data Recording (HUMS-ODR) or Supervisory
Control And Data Acquisition Systems (SCADA)... and even projects of
"Digital Twins"

> New reliability data with (hopefully) richer information for dynamic
evaluation and prediction, at the item level
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Introduction

A new technological paradigm for reliability evaluation & maintenance
decision-making

> Monitoring data of different nature are largely available : examples of
monitored systems
> Vehicles : aircraft systems and structures, locomotives, automobiles, ....
> Energy production and conversion systems : offshore/onshore wind turbines
& farms, solar energy systems, NPP, ...
> Critical infrastructures : power grids, transportation infrastructures, ...
> Industrial installations and manufacturing systems
> Smart systems : use information to optimize their operation (closed-loop),
but have to use it in a smart way to capture all the "value of information"

> General requirements for reliability of smart systems or smart reliable
systems : methods and models for dynamic online reliability evaluation
and prediction, for an individual item, based on monitoring information
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Introduction

Monitoring information + reliability = conditional updated reliability

> Monitoring data & online information help to reduce uncertainty, which
translates in an updated "conditional" reliability

» Bayesian analysis and bayesian decision-making : provides a formal
approach to use the information and assess its effect on the system
operation and evolution

> Information in reliability within the bayesian framework : consistent way of
incorporating new information into existing models

» Sequential learning ; sequential decision-making

Prior
(Existing/Previous Mode)
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Introduction

Dynamic condition-based or predictive maintenance / Conditional reliability

“Production engineers want to know if plant will run “until the end of the
week”, not that a stoppage is necessary now because “component X is due
for replacement” " (Scarf 2007)

What is the reliability gain achieved by the use of a health monitoring
system?

From a psychological point of view, condition monitoring can reduce the
uncertainty operators feel about the current state of plant (Scarf 2007)

Condition monitoring and dynamic maintenance approaches can help

But, dynamic maintenance can be expensive to implement and returns on
investment has to be studied (cost-benefits analysis)

Need for practice-oriented performance models that can help to go from
static (but robust) preventive maintenance policies to dynamic
condition-based maintenance polices
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Introduction

Dynamic condition-based or predictive maintenance

» Maintenance : a privileged area for the use of dynamic reliability
implementation

» Strong interest in the use of the monitoring information in “health
management” : predictive maintenance, PHM, SHM, ...

Role of prognostic in maintenance decision-making : still to be explored and
thoroughly assessed

Applying the prognostic in decision-making can avoid inopportune maintenance
spending. But...
> Prognostic is always associated with unavoidable inaccuracy and
uncertainty problem

» How to integrate the prognostic in maintenance strategies and in the
decision process, knowing the existence of this uncertainty?

Remaining useful life estimation: a key step

9/76



Introduction

Why prognostics ?

» Prognostics can enable:

» Adopting condition-based maintenance strategies, instead of time-based
maintenance

10/76



Introduction

Why prognostics ?

» Prognostics can enable:

» Adopting condition-based maintenance strategies, instead of time-based
maintenance
> Optimally scheduling maintenance

10/76



Introduction

Why prognostics ?

> Prognostics can enable:
» Adopting condition-based maintenance strategies, instead of time-based
maintenance
> Optimally scheduling maintenance
» Optimally planning for spare components

10/76



Introduction

Why prognostics ?

» Prognostics can enable:
» Adopting condition-based maintenance strategies, instead of time-based
maintenance
> Optimally scheduling maintenance
» Optimally planning for spare components
» Reconfiguring the system to avoid using the component before it fails

10/76



Introduction

Why prognostics ?

» Prognostics can enable:

>

vvyVvyy

Adopting condition-based maintenance strategies, instead of time-based
maintenance

Optimally scheduling maintenance

Optimally planning for spare components

Reconfiguring the system to avoid using the component before it fails

Prolonging component life by modifying how the component is used (e.g.,
load shedding)

10/76



Introduction

Why prognostics ?

» Prognostics can enable:

>

vvyVvyy

>

Adopting condition-based maintenance strategies, instead of time-based
maintenance

Optimally scheduling maintenance

Optimally planning for spare components

Reconfiguring the system to avoid using the component before it fails
Prolonging component life by modifying how the component is used (e.g.,
load shedding)

Optimally plan or replan a mission

» System operations can be optimized in a variety of ways
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Introduction

Remaining useful life

Prognosis defined in the standard 1SO 13381-1 as a “technical process resulting
in determination of remaining useful life".
Two main prediction types in a prognosis procedure :

1. To predict how much time is left before a failure occurs, given the current
system state and past operation profile (and the associated “uncertainty”
quantification, e.g. a probability density function of this time)

Fr(tlty) =P(Tr < t|T > 11 NO, NO(t) NE(H))

2. To evaluate the probability that the system operates without failure up to
a given future time, given the current system state and past operation

profile:
]P(T > l’z‘T >t ﬁ@tl ﬁO(fl) ﬁg(tl))
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Introduction

Remaining useful life prediction

Uncertainty assessment and propagation for RUL prediction

» Probabilistic characterization of the RUL: necessary to weigh the benefits
and the costs of a decision + framework to integrate quantitative and
qualitative information

» Strong arguments for probabilistic rather than point prediction : this
indicates the degree of uncertainty and enables comparisons under
different assumptions about costs and benefits for maintenance/safety
decision-making

> Sources of uncertainty 77 : intrinsic aleatory uncertainty (item-to-item
variability, environment/operation variation) vs modelling (epistemic) or
even “technical” (from the prediction process) uncertainty. Subjective vs
objective probabilities ? Bayesian framework ?

RUL prognosis is not a prediction, but rather the characterization,
quantification and propagation of the uncertainty we have on the system state
and failure time, based on our knowledge of its deterioration behavior, of its
past operational (usage, environment, maintenance, ...) history and assuming
future operational scenarios
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Introduction

Remaining useful life prediction

RUL prediction : a complex and complicated process

s . . N
» Resort to different competencies, disciplines and
complementary methodologies, sometimes difficult to

integrate into a comprehensive framework

Pre-processing

> lterative design process, too often sketched as a linear one
High-level . .
features extraction (II |s|ead|ng)

» How to determine the quality of a RUL prediction : trueness,
Post-processing accuracy, precision, predictive power, ....7

For maintenance purposes, the quality of RUL estimation can be
Health state

estimation measured by the performance of the maintenance policy
Future Srace What is the added value of monitoring information through
prognosis ?
\

Joint progn05|s/ma|ntenance assessment

” Joint prognosis/decision-making assessment
Decision
(maintenance/control)|
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Introduction

Imperfect monitoring

Dynamic policies

Deterioration-based failure prognosis

Condition Indicator

Expected Remaining

Useful Life
Reliability-based

Distribution \

/ Distribution

Functional Failure Threshold

Detection Threshold

Units of Usage

Robustness

Conditior-based

Input Data

Hypothesized
Input Data

Reliability adaptive systems

State Estimation
Using Particle Filtering

Conclusions

Sensor
Readings

State Prediction
Using Monte Carlo
Simulation

Remaining Useful Life
(RUL) Computation
using Thresholding

p .
Model
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Example of RUL estimation
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Introduction

High-level deterioration feature for prognosis

» Feature A : Useful for both 33
diagnostics and prognostics since 30
it exhibits a predictable trend

> Feature B : Useful for diagnostics
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Introduction
PHM Approaches / Prognostics Algorithms Classification

Classification proposed by (Celaya Galvan & Saxena, 2014) and extended by

(Rakowksy & Bertsche, 2015)
» Type 1- Reliability data-based
> Use population-based statistical model

> Consider historical time to failure data to model the failure distribution.

Estimate the life of an average component operating under historically
average usage conditions
> Weibull analysis
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Classification proposed by (Celaya Galvan & Saxena, 2014) and extended by

(Rakowksy & Bertsche, 2015)
» Type 1- Reliability data-based
» Use population-based statistical model
> Consider historical time to failure data to model the failure distribution.
Estimate the life of an average component operating under historically
average usage conditions
> Weibull analysis

» Type 2 - Stress-based
» Use population based fault growth modelflearned from accumulated
knowledge
> Consider environmental stresses (e.g. temperature, load, vibration, etc.) on
the component. Estimate the life for an average component under the given
usage conditions
> Proportional hazards model

» Type 3 - Effects-based, condition-based or deterioration-based
» Use individual component based data-driven model
> Consider the way in which a specific component responds to its specific
usage, the measured or inferred component degradation. Estimate the life
of a specific component under specific usage and degradation conditions
> General Path Model, cumulative damage model, filtering and state

estimation.
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PHM Approaches / Prognostics Algorithms Classification

> Type 4 - Predictive analytics
» Data-mine information from large datasets and identify complex patterns
that have been shown to lead towards anomalies of failures through
collected history data
> high dimensional large time-series datasets
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Introduction

PHM Approaches / Prognostics Algorithms Classification

> Type 4 - Predictive analytics
» Data-mine information from large datasets and identify complex patterns
that have been shown to lead towards anomalies of failures through
collected history data
> high dimensional large time-series datasets

» Type 5 - Reliability adaptive systems
> Feedback from system-individual remaining useful life information on the
system operation.
Item derating
Maintenance optimisation
System control
System reconfiguration

vyvyVvyy
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© Imperfect monitoring and maintenance
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Imperfect monitoring

Maintenance & imperfect monitoring

Imperfect monitoring information
+
Stochastic dependencies between components

= Taking into account information "quality”
in the decision-making procedure

Objectives :
» Robust maintenance performance
> Design/choice of the monitoring device performance

» Joint optimization of maintenance and monitoring
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Maintenance and imperfect monitoring

Condition-based replacement policy
» Observed failure rate
1
A =lim -P(t<T < t+h|F
t W0 h ( panne =~ | t)

where F; contains all the imperfect monitoring information [0, t].
A} deterioration or condition “index”

» Maintenance decision rule

Replacement at 7 = min{ting{/\‘; > Mim b Traiture }
>

Control limit condition-based maintenance policy
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Imperfect monitoring Dynamic policies Robustness Reliability adaptive systems Conclusions

Observed failure rate

= 1131 hIP(t

b Mo+ dp

Mz + M

Observed failure rate
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Policy performance
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Decision rule :

™ = mil’l{TO, To/ b*/ Z, Tfuilure}

23/76



Imperfect monitoring

Maintenance and imperfect monitoring (cont’d)

» Consider a system made of monitored components (failed ? running ?)

> Imperfect monitoring characterized by py, (false alarm) and p,; (non
detection): ROC curves

» For component i, the available information is T? instead of T; (true failure
time).

How do we integrate “optimally” this imperfect monitoring information in
maintenance decisions, e.g. replacement policy for the monitored components ?
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Imperfect monitoring

Maintenance and imperfect monitoring (cont’d)

For example, for a 2 components parallel system, it can be shown that the
optimal replacement policy for the system has the following structure

T = min{t,q, max{T}, t }, max{T3, t, }, T}

* . One unit failure detected

L >
I T T Ll
0 tfa tnd Time
Replacement Replacement
of both units of both units
atty, at detection time
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Maintenance and imperfect monitoring (cont’d)

R.O.C. curves for different monitoring quality levels
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Dynamic policies

Outline

© Dynamic maintenance policies for continuously deteriorating systems
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Dynamic policies

Continuously deteriorating system

E.g. Gamma process : a generic stochastic model (see survey by Van
Noortwijk, 2009)

X A
Failure zone Failure
L —
_ | Operating zone : Unavailability
S ;
S —
2 I'(c(t-s),p)
E R ~1(o.(1-S),
5 G2
o
: ; >
0
S t Time

Physical phenomena : erosion, corrosion, crack propagation, mechanical wear,
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Dynamic policies

Condition-based maintenance problem

Sequential condition-based policy

Failure > Inspection/replacement policy

> General maintenance policy (partial
repair)

-
"

» Stochastic deterioration model

2 main characteristics :

[ » Joint optimization of the nature and of
: the time of the maintenance action
|

Degradation level

» Non periodic inspection/maintenance
Sequential P P /

decision (time dynamic intervals)
(Ak tk+1) ?

4 to 3 Time
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Dynamic policies

Parametric maintenance policy
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Dynamic policies

Deterioration vs RUL based decision

> Deterioration based decision-making:
maintenance decision rule = function of the degradation level of the
system (health state estimation)

» RUL based decision-making:
maintenance decision rule = function of the remaining time before failure
(prognosis - which depends on the current system deterioration level)

» Both are conditioned by the past observations, but use and process the
information differently
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Deterioration based decision

Aperiodic condition-based policy
At inspection time t;, degradation level x;
> if x; > L (failure) then: corrective replacement
» if L > x; > M (advanced deterioration) then: preventive replacement

» if M > x; then: next inspection planned at time ¢ s.t.
t—t;=m(x;)

where m is a linear function of x (simplest case)

Decision “parameters”

> Preventive replacement threshold M

> Slope of function m and m(0)
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RUL based decision

Remaining Useful Lifetime
RUL; = inf{s > ¢, system “failed” at time s} — ¢
Quantity of interest: distribution given the observations

l:(RULt|Xti = xi)

Dynamic time based policy

> Inspection schedule built dynamically - RUL update after each inspection
» At inspection time f;, degradation level x;
> Next inspection such that the probability of failure does not exceed 1 — Q
P(t; + AT > RUL, |X(t) = x:) =1 - Q
> if AT < ATmin then: preventive replacement.

Decision “parameters”

> Preventive replacement threshold AT,

» Decision parameter for inter-inspection time.
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RUL based decision

Dynamic time based decision rule: example of successive decisions

Probability of failure before next inspection < 0.05 (Q = 0.95)

0.2

P(T,<t, | X(177.6)=160)=5%

P(T <t,)=5% N

oo

Inspections

Degradation level at last inspection time close to failure limit = Peaky RUL distribution J
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Inter-inspection time evolution

AT as a function of the degradation level

Example: Ga(t,1), L=12 and 1—Q =0.01:0.1:0.71 (curves from bottom to top)

AT curves
Linear regression AT curves
curves 4

Linear regression

10
10
8
=1
5
6
4 5
2
0
2 0
0 2 6 X 10 12 0 1 2 3 4 5 6 7 8
Degradation Degradation
AT functions are almost linear for homogenous Gamma process J
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Introduction Imperfect monitoring Dynamic policies Robustness

Comparison based on cost

Long-run cost per time unit
s c(t) . .
llmt*)oo -5 with C(t) = Ni . Ci —+ Np . Cp + N;-C. + Td . Cd
v

Acronyms
> N;: Nb of inspections (cost C;) > Nc: Nb of corrective replacements (cost Cc)
> T,;: downtime duration (cost C;) > Np: Nb of preventive replacements (cost Cp)

v

Numerical result

Numerical example

Ga(t,1), L =12, C; =25, Cp =50, [ CRUL | Chegrad | G2in |
Cc =100 and C; = 250 12.21 1275 | 4.4% |

> |s the cost gain significant? (linear inspection function)
» lIs it a relevant indicator? implementation modalities, complexity level of
the decision rule, number of parameters to optimize, robustness ...

Reliability adaptive systems Conclusions
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Dynamic policies

Numerical results
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Linear inspection scheduling function m(x) = 1+ max(n(x),0) with
n(x) =a—(a/b)x - M=4
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Dynamic policies

Numerical results

777777 (M=6)
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Linear inspection scheduling function m(x) = 1+ max(n(x),0) with

n(x) =a—(a/b)x - M=6
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Outline

@ Deterioration vs RUL based decision: robustness analysis
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Deterioration vs RUL based decision: robustness analysis

Example of multiple degradation paths of stress corrosion cracking
Modeling of crack behavior (e.g., i-th crack), traditional model again
e Arrival: homogeneous Poisson process {N,"}t>0 with parameter A

e Propagation: homogeneous gamma process {X; with parameters & and

Fizo

\ /-th crack path crack i

/.

Tt~ T(1,

- >
:<—>l
e

B
14
=3
o
>
o

coalescence

N

At i time

>

Modeling of system failure
e Coalescence phenomenon = System fails due to multiple crack paths

e Failure: {sum of crack sizes X; exceeds L} or {cracks number N; reaches N}

Conclusions

crack j
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Degradation based maintenance decision rules

M_=19,T _=4.6CT™T M_)=60339
ot opt o oMoy

t

Periodic inspections every T

(T, M) strategy {crack size}

o Preventive replacement is performed when

T M)

M<X5 <L

e Decision parameters: T, M

Ny ™8T, =5, CTMT M N, ) <5785

ety

cIMNITM N

(T, M, Np) strategy {crack size, crack number}

e Preventive replacement is performed when

Ty 5 My =23, TIN5 785 Ny 5 M =23, CTMINT M UN, )= 5785

M<X] <LorN, <Np <N

e Decision parameters: T, M, N,
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RUL based maintenance decision rules

=55,C(T

oot op) = 57627

Periodic inspections every T Topt =50 o ot
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e Preventive replacement is performed when

0<E (RULTk | X%k,NTk) < ip a

o Decision parameters: T, up

Hp
Topt = 5 Ro o= 07 C(T Ry ) = 5.7552
SO0
14 So5500
oo
(T,Rp) strategy {RUL law} ==
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e Decision parameters: T, Rp
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Imperfect monitoring

Dynamic policies

Performance analysis - Cost

cort

Remarks

T,M) strategy
T,M. NP strategy
T, Fﬂ, strategy

- (
o
-(
(Tp ) strategy

40 50

o (T, M) strategy is less profitable

e Other strategies have the same profit

e Perfect parameters estimation

Robustness

cort

cort

Reliability adaptive systems

Conclusions

+==(T,M) strategy

--- (T,RP) strategy
—_— (TpF) strategy

- (T.M,N,) strategy

64 76 88

- (T.M) strategy
. (T,M,NP) strategy
- - -(T/R,) strategy

_ (Tup) strategy -
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Robustness
Performance analysis - Robustness

Variation of the decision parameters Hp, Rp, M:

Degradation with small variance Degradation

—o— (Tpp) strat.

with high variance

—o— (Tpp) strat.
— (T.Rp) strat.
— (T.M,Np) strat.

— (T,HP) strat.
4
—— (T,M,NP) strat.
3
2
wO
2
1 /
0 _/
-20 -15 -10 -5 0 5 10 15 20
e (%)
P
Remarks

e Imperfect parameters estimation
o (T,Rp) strategy > (T, p) strategy

e Increasing variance in degradation process
= Increasing robustness
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Outline

O Reliability adaptive systems
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y adaptive systems

Reliability adaptive systems

[Taken from Meyer & Sextro, 2014]

Controlling the remaining useful life using control approaches

Current remaining
useful lifetime RUL

Dynamic system

ARUL

equirements

|

ystem
parameters P

e

RUL
Controller
CRuL

Generation of
RUL trajectory

Pareto
Controller

‘us
>
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Problem & work motivation

Mechanical
power source

I
1 Contact
I surfaces
|

Dynamics of
Deterioration

Applications

Reliability adaptive systems

Mechanical
power load

Tire-road contact

PHM - Prognostics and Health Management
RAS - Reliability-Adaptive Systems

Clutch system

Friction drive system

Problem: Modeling and on-line estimating the deterioration of a friction drive

system with respect to the operating conditions
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Friction Drive System Modelling

Friction drive

Type of transmission that uses 2 circular

devices to transfer power by friction.

Roller-on-tire basic system

> Is a friction drive composed by a wheel

(driven device) and a motor (driver

device).

. . >
driven device Both contact surfaces (rotor of the motor

load ‘\wl

and the tire) deteriorate

> Deterioration reaches eventually a

threshold above which the system is
driver device
source

considered failed
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Friction Drive System Modelling

Motion equations
J1w1(t) = — By (t) + Tp () +KnI(t)
\\F/
F.(t)n
Jawo(t) = — Baw(t) + Ts(t)
~——"
F.(t)r:
F. =al, = D((lel — 1’2(4]2)
=

01 U2

Conclusions

« > 0 is the contact quality coefficient
— uncertain parameter, time varying
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Dynamical model of deterioration

By assumption, a(f) decreases as deterioration D(t) increases:

a(t) = —mD(t) +b

where m > 0 and b are considered as unknown and bounded parameters.
Dissipation-energy based model of deterioration

The deterioration due to the dissipated energy in the contact D(#)is:

t t
D(t) ::/ Fc(t)Aydt:/ a(rwy — rows)?dt
0 N — 0
Pe(t)

Where P. is the dissipated power at the contact level.

Conclusions

Now we can compute the dynamics of the parameter a(t), as follows:

&(t) = —m-a-p(x)
where the sliding factor p(x) > 0 is given by:

p(x) := (rwy — rnwy)? = A2
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Dynamical model of deterioration

Remark that the contact quality deterioration-rate &(#), depends on the relative
tangential speed, which could be controlled if the uncertain system is
controllable.

In terms of the deterioration index D, equation (1) can be rewritten in a
relative form as follows:

alt) o
20) ~ —D(t) +1 (1)

where 0 < D(t) < 1 denotes the normalized deterioration. That is:

= m

D(t) = mD(t) (2)
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Dynamical model of deterioration

Using Equation a(t) = —mD(t) + b,

A

the deterioration D can be estimated
by:

D
D

(@(0) —a)/m ®3)
(a(0) —&)/m (4)

From D = caA? and
D=—mcA2D+bcA2
—~— ~—
d(t) d(t)
Let us consider

Doy 2 lim D(t)
t—+

(o)

Reliability adaptive systems

This can be calculated with D = 0,
thus:
—mMDpyay +b =0 (5)

And
Dy =b/m = IX(O)/VH (6)

Consequently, using equations (2), (4)
and (6), it is obtained the normalized
estimation of deterioration D:

15 = D/Dmax = (D‘(O) - 5{)/0((0) (7)
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Uncertain linear system modelling

Defining the system state as x := [w1(t) wy(t)]T (the angular speeds), the
control input u = I(t) (the electrical motor current) the state space
representation of the uncertain linear system will be

x = A(a)x+Bu
y = x

where a stands for the uncertain parameter, with matrices:

_ (—ar? —By) /] aryra/ Ji }
Alw) { arary/ J2 (—ar3 —Ba) /]2
| Kw/T
2= ]

« affects the matrix Ay(a) in an affine way
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Estimating the state of deterioration

Consider the augmented system:

X A(a) x+Bu
& = —m-a-p(x)
m = 0
y = x

— If we assume that this augmented system is observablel, then, it is possible
to design an Extended Kalman filter to estimate the states x, the contact
quality coefficient « and the constant m.

— The availability of the estimations of « and m means that, the state of
deterioration D can be evaluated as well at every time instant.

D = —(1/m)& — Deterioration current condition
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Remaining Useful Life (RUL)

Remaining Useful Life RUL

The Remaining Useful Life (RUL) of an asset or system is defined as the time left
from the current time to the end of the useful life, where this end can be defined
according a threshold acceptable condition.

| useful lifetime until maintenance
———————————»

A A=Current condition
B = Maximum Acceptable Condition Failure
100% f---============mmmmmmm oo A
B :
(=3 I H
2 H H
=] H H
© ' '
I H H
D 5 ; ;
et H H
[} H :
@ H :
(=} A ' '
v RUL ' :
—— ! !

useful lifetime until failure

The problem on RUL is:

For a given predefined scenario and/or protocol (fixed duty cycles, minimal and
maximal electrical motor current, etc), at every time instant, estimate the RUL of the
actuator with a certain precision.
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Introducing randomness in the model

Due that the estimation of Remaining Useful Life (RUL) is not deterministic,
we try to estimate it using stochastic simulation.

There are two kind of uncertainties that have to be treated here:

[ Internal mode ] [ External mode ]
[Uncertain/random parameters ] [Uncertain operating conditions ]
A Iy .
by Amp — eee

v
o)
v

Dy Dinax D,
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Imperfect monitoring

Deterministic operational analysis

Deterioration

Constant behavior of input
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Stochastic operational analysis

Scenario A
[ Internal mode ]
— Fixed values of m and b
Uncertain/random parameters — Random values of m and b

1

°

Ramdom value for parameters m and b
in each simulation

Deterioration (Norm.)
S

Input I(t) - square wave with constant
values in duty cycle

o

o 20 40 60 80 100 120 140
Time [H]

m .~ N(mm,(f,%), My >0 100 simulations

b~ N (b, 02), by >0
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Stochastic operational analysis

Scenario B
— Fixed values of t;, and t;
[ External mode ] — Random values of t;, and t;

~_b

[Uncertain operating conditions ]

Deterioration (Norm)

Input I(#) - square wave with random
values in duty cycle

Constant parameters m and b —— Usetuiaime
0,035 |- [memmmeNormal distribution fitting
""""" Weibull fitting

tp~ Exp(1/py), 0< py
ty ~ Exp(1/p), 0 < pg < pyg fon

0 S —Y
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Useful lifetime [H]

Figure: Useful lifetime. Histogram with
normal and Weibull distribution fitting. s9/76
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Stochastic operational analysis

Scenario C

[ External mode ]
~ Imax=21 A
. . . 5 08
[Uncertaln operating conditions ] g
2 Imax=19 A
E o4
Input I(#) - square wave with random H
values in duty cycle 02
. L
” Deterioration obtained with 2 different

maximal values of I(t)

Activation sequence
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Stochastic operational analysis

Scenario D

[ External mode ] g _ A
= i, DbO=0 QV

£ SN

[Uncertain operating conditions ] oo ‘

Input I(t) - step with Time {Hours)
random amplitude

il D) £0
£

o 50 100 150 250 300 350 a00

20
Time (Hours)
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Stochastic operational analysis

Scenario E

[

Internal /external mode

Uncertain/random
parameters and operational conditions

Input I(#) - square wave with random

Ramdom value for parameters m in

values in duty cycle

each simulation

Normalized degradation

Reliability adaptive systems

300 350 400

200
Time (Hours)

— Curve with the maximal value of m
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Condition monitoring and prognosis

Reliability adaptive systems

u=1(t) y = lwi(t) wa(h)]"
-—»| System ) .
Operating conditions
Hypothesis
dta
T RUL
—>— — — —Pp —
Observer . Prognostic RUL
) .
. 178
S b b
.IIIIIIIII> . . IIIIIII*
Monitoring

Figure: Condition monitoring and RUL prognosis architecture.
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Reliability adaptive systems

Synthesis of an Extended Kalman Filter - EKF

Defining the vector state of the augmented system as

x:= [wi(t) wy(t) a(t) m]T, the control input u = I(t), and assuming that at
every time instant wy(f) and wy(t) are available from the sensors, the state
transition and the system output in continuous time are respectively:

%= f(x)+Bu+w (8)
y=Cx+v (9)
with
1 0 0 0
C:{o 1 0 o} (10)

and where w and v are the process and measurement noises which are both
assumed to be Gaussian noises with zero mean and covariance Q and R
respectively.
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Synthesis of an Extended Kalman Filter - EKF

In order to synthesize an Extended Kalman filter, the following covariance
matrices are selected:

0 o3

o O oo
o oo o
o O oo

0

0 o2 0

o &= (1)
o

where 07, stands by the disturbance variance affecting the behavior of the state
m. The symbols (712 and 0’% represent the sensor noise variances in speed
sensors measuring w1 and wy, respectively.
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Evaluation of the observer performance

Three different assumptions on the dynamics of m are presented:
1. i1 =0 the parameter m is always constant,

2. i =6(t*) the parameter m is piece-wise constant, and an abrupt change
in the value of m can appears at the instant k = t* (a Dirac delta function
models this aspect)

3. 7t = ¢ the parameter m can suffer a progressive change with a rate of
change equal to ¢ (a possible random but a priori bounded input).
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Evaluation of the observer performance

8 10 12 14 18 18
Time [s]

Conclusions

Figure: Input sequence and estimation of the current state of iz and & with an abrupt

variation of m
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Evaluation of the observer performance

0.15, - : : ' . :
u=I(t) Syst y = [wi(t) wa(t)]
ystem Operating conditions f) 0.1
Hypothesis.
ata 0.05|
EKF mEm RUL
—>9— — — —»] ——
Observer 4 Prognostic| RUL 0 2 4 6 8 0 12 14 16 18 20
. Time [s]
:.....?ED.).pM tD FETTTIT ~ Cimiins Mot e A
lonitoring DA /\
1 .

Figure: Condition monitoring and RUL prognosis architecture.

S

>
PR -
1 RUL RUL, RUL ~ Time

Figure: Uncertainty of D (Confidence interval)
used in the prognostic of RUL.
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Evaluation of the observer performance

—\alpha_est data
4001 == Normal D. Fitting [

111 Gamma D. Fitting
300

Density

L L
8.447 8.448 8.449 8.45
Data

L
8.445 8.446

Figure: Distribution of a for 500 trials. &em = 8.44,0, = 9.43x107*

——m_est data
15001 7 or

= Normal D. fitting |
o Gamma D. fitting|
10001 /

500

Density

[
0.019 0.0192 0.0194 0.0196 0.0198 0.02 0.0202 0.0204 0.0206 0.0208
Data

Figure: Distribution of m for 500 trials. fyeqn = 0.02, 03, = 2.54x107%
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Evaluation of the observer performance

0.81

Deterioration (Normalized)

o | | | | | | | | |
(] 10 20 3 40 50 60 70 80 90 100
Time[H]

Figure: Several simulations of deterioration. Example.
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NASA Ames Center Rover Testbed

[Taken from Daigle, 2014 - PHM 2014]

>

Developed rover testbed for hardware-
in-the-loop testing and validation of control,
diagnosis, prognosis, and decision-making
algorithms

Skid-steered rover (1.4x1.1x0.63 m) with each
wheel independently driven by a DC motor

Two parallel lithium-ion battery packs (12 cells
in series) provide power to the wheels
Separate battery pack powers the data
acquisition system

Onboard laptop implements control software
Flexible publish/subscribe network architecture
allows diagnosis, prognosis, decision-making to
be implemented in a distributed fashion

Reliability adaptive systems

Batteries  Controlling Laptop Phone

/
Motors Data Acquisition and
Power Distribution
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Integrated prognostics architecture

[Taken from Daigle, 2014 - PHM 2014]

>

Rover receives control inputs (individual wheel speeds) and sensors
produce outputs

Low-level control modifies wheel speed commands to move towards a
given waypoint in the presence of diagnosed faults

Diagnoser receives rover inputs and outputs and produces fault candidates
Prognoser receives rover inputs and outputs and predicts remaining useful
life (RUL) or rover and/or its components (eg, batteries, motors)
Decision maker plans the order to visit the waypoints (science objectives)
given diagnostic and prognostic information. It can also selectively
eliminate some of the waypoints if all of them are not achievable due to
vehicle health or energy constraints.

¢ Diagnosed R ining Life

Inputs uy, Rover/ |Outputs z;‘.\I Diagnoser IFaull Set FkI Prognoser | RUL; | Decisioj((:—rcr"ai" Map M

Simulator | Maker Waypoint Set
L {(i,9), i HL
Low-level [*€ ( Waypoint List { (2, y:), vi} lzf\
Control [
Waypoint wy,

72/76



Introduction Imperfect monitoring Dynamic policies Robustness Reliability adaptive systems Conclusions

Outline

© Concluding remarks and open issues
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Conclusions

Technical needs for effective RUL prediction and management

As usual a good mix of engineering expertise, physics of failure knowledge and
data analytics for robust decision-making

> Well understood failure mode(s)

> Model the link between the reliability of a unit (and failure time data) and
its deterioration/usage/environment history

> Ability to model and predict deterioration/usage/environment covariates
for individual units

» Empirical modeling vs physics of failure and knowledge based models

> System State Awareness (SSA) for a more resilient control and operation
of the system
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Example of a tool for SSA : Digital Twin

> A concept from NASA which
combines as-built vehicle
components, as-experienced
loads and environments, and
other vehicle-specific
characteristics to enable
ultrahigh fidelity modeling of
aircraft and spacecraft or their
components throughout their
service lives.

Credit : MIT

» Aviation week, 2014 - " It is 2035, and a customer is taking delivery of not
only a new aircraft but also a highly detailed digital model specific to that
aircraft’s tail number-its airframe, engines and systems."

» "Built up over the course of design, development, testing and production,
and ultra-realistic down to the level of unique manufacturing flaws, the
model will accompany the aircraft throughout its service life. Mirroring its
flights exactly, the model's simulations will be compared with data from
the real aircraft to identify anomalies, predict maintenance needs and
forecast remaining life."
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Conclusions

Concluding remarks: Open Issues

Many open challenges :

>

| 3

>

Multi-component systems prognosis & maintenance : scalability issues
Distributed multi-level prognosis ; prognosis fusion for maintenance

Further integration of the processing chain from sensors to maintenance
decision : proof of concept still challenging

Design to PHM and maintenance

Integration of future operating conditions, environments, ...jointly in the
prognosis, maintenance & operation decision

Feedback from operation and maintenance decisions on the RUL (eg
derating)
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