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Agenda

 Machine Learning in Space Operations

• Anomaly Detection [AD]

• Diagnostics [Diag]

• Prediction [Pred]
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Background
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20,000 – 40,000
TM parameters
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Anomaly Detection [AD]

 Challenges

 Classic Approach

 Our approach

• Some “magic” sauce

08/09/2020 Machine Learning in Space Operations

By Jesus Solana from Madrid, Spain - Black sheep . Do u also feel different? // la Oveja negra. Tambien te sientes diferente?, 
CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=5050231
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[AD] challenge 1: definition

 What is an anomaly?

• “We didn’t want this to happen” 

• “We wanted this to happen, but it didn’t”

 Machine Learning does not know what you wanted

• Anomaly Detection  Novelty Detection
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[AD] challenge 2: First Time Anomalies

 Something in Spacecrafts will eventually break:

• What?

• When?

 First time anomalies impact Space Operations the most

• Flight control engineers operate spacecraft differently after anomalies
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[AD] challenge 3: False Alarms

 False Alarms

• It takes time to investigate each alarm

• Engineers hate false alarms

• May result in engineers ignoring Anomaly Detection results

 Example: 99% of the detected alarms are correct

• In a modern spacecraft, with ~ 40,000 TM parameters

 400 False alarms!
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[AD] challenge 4: obviousness

 Operators need to clearly see why it is anomalous

• Otherwise, lack of confidence in results
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[AD] Classical approach: Out-of-Limits (OOL)
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Hard Limit

Soft Limit

Soft Limit

Hard Limit
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[AD] Our Solution

Split time series in periods 
and compute features:

 Mean

 Standard Deviation

 Maximum

 Minimum
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[AD] Our Solution
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mean

stdev
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[AD] Our Solution – Local Outlier Probabilities
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Image credit: Kriegel, Hans-Peter, Peer Kröger, Erich Schubert, and Arthur Zimek. "LoOP: local outlier probabilities." In Proceedings of the 
18th ACM conference on Information and knowledge management, pp. 1649-1652. ACM, 2009.

1. Makes no assumptions on how nominal 

behaviour should be

2. Takes into account that a parameter can 

have different nominal behaviours

3. Takes into account density (no distance 

threshold required)

4. Outlier probability allows for comparison 

among different parameters
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[AD] Magic Sauce

Reducing false alarms, increase obviousness

 k is arbitrary

• k = {5, 10, 20, 30}

 Proximity filter
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[AD] Results
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[AD] XMM Example
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OOL

Novelty Detection
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[AD] ISS ATV fan example
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[Diag] Diagnostics

 Support operators in finding out why the anomaly happened

• Other parameters may hold the key to understand why the anomaly 
happened

• Check all 30,000+ TM parameters (and TCs and Events) for insights
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[Diag] Dr. MUST

 Assumption:

• Parameters involved in the anomaly behave differently during 
nominal and anomaly periods
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[Diag] Dr. MUST
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N T

Compare features

Check feature is NOT present
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[Diag] Dr. MUST example
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[Diag] Dr. MUST example
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Number of bit errors detected & corrected during a Solar Flare

In addition of some star 
tracker parameters 
affected 
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[Diag] Dependencies from TM data
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Graph representation of the Mars Express dependencies (only a small section is shown)
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[Pred] - Prediction

 Let’s see some examples about prediction in the Space Domain
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[Pred] – Thermal Power Consumption
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[Pred] – Collision Risk with Space Debris
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[Pred] Radiation Belts crossing
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[Pred] Wind impact in Deep Space antennas
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[Pred] ESA News number of views
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[esa.int] Predict which articles will receive a 
high number of views 

High: Rosetta, comet, surface, lander, 
image, crater, mars, stars, galaxy, black 
holes 

Low: ESA, company, technology
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Let’s stay in touch

 LinkedIn: https://www.linkedin.com/in/josemartinezheras/

 Email: jose.martinez@solenix.ch
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Discussion
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Solenix Deutschland GmbH
Spreestr. 3
64295 Darmstadt
Germany

info@solenix.de

www.solenix.de

Thank You


