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Agenda

= Machine Learning in Space Operations
*  Anomaly Detection [AD]
* Diagnostics [Diag]
* Prediction [Pred]
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Anomaly Detection [AD]

= Challenges
= (Classic Approach
= Qur approach
* Some “magic” sauce

By Jesus Solana from Madrid, Spain - Black sheep . Do u also feel different? // la Oveja negra. Tambien te sientes diferente?,
CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=5050231
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[AD] challenge 1: definition

= What is an anomaly?

* “We didn’t want this to happen”
*  “We wanted this to happen, but it didn’t”

= Machine Learning does not know what you wanted
*  Anomaly Detection > Novelty Detection
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[AD] challenge 2: First Time Anomalies

= Something in Spacecrafts will eventually break:
* What?
* When?

= First time anomalies impact Space Operations the most
* Flight control engineers operate spacecraft differently after anomalies
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[AD] challenge 3: False Alarms

= False Alarms
* It takes time to investigate each alarm
* Engineers hate false alarms
* May result in engineers ignoring Anomaly Detection results

= Example: 99% of the detected alarms are correct

* In a modern spacecraft, with ~ 40,000 TM parameters
+ 400 False alarms!
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[AD] challenge 4: obviousness

= QOperators need to clearly see why it is anomalous
* Otherwise, lack of confidence in results
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[AD] Classical approach: Out-of-Limits (OOL)
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[AD] Our Solution

Split time series in periods
and compute features: |
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[AD] Our Solution
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[AD] Our Solution — Local Outlier Probabilities

1. Makes no assumptions on how nominal
behaviour should be

2. Takes into account that a parameter can

have different nominal behaviours

3. Takes into account density (no distance

threshold required)

4. Outlier probability allows for comparison

among different parameters
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Image credit: Kriegel, Hans-Peter, Peer Kroger, Erich Schubert, and Arthur Zimek. "LoOP: local outlier probabilities." In Proceedings of the

18th ACM conference on Information and knowledge management, pp. 1649-1652. ACM, 2009.
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[AD] Magic Sauce

Reducing false alarms, increase obviousness

= kis arbitrary
 k={5, 10, 20, 30}

= Proximity filter
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[AD] Results
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[AD] XMM Example
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[AD] ISS ATV fan example
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[Diag] Diagnostics

= Support operators in finding out why the anomaly happened

*  Other parameters may hold the key to understand why the anomaly
happened

* Check all 30,000+ TM parameters (and TCs and Events) for insights
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[Diag] Dr. MUST

=  Assumption:

* Parameters involved in the anomaly behave differently during
nominal and anomaly periods
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[Diag] Dr. MUST
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[Diag] Dr. MUST example

Normalized Data bAttitude Error y-axis vs. ASPERA scanner movement
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[Diag] Dr. MUST example
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[Diag] Dependencies from TM data
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[Pred] - Prediction

= Let’s see some examples about prediction in the Space Domain
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[Pred] — Thermal Power Consumption

Kelvins About Competitions Mars Express Power Challenge L jose ~

March 31, 2016, 10 p.m. UTC Timeline July 31, 2016, 10 p.m. UTC

The competition is over.

Home

Challenge N S
"2 Mars Express Power Challenge
Evaluation AN >
Rules

L Take Part
Results

Leaderboard

Submission
It has now been more than 12 years that the Mars Express Orbiter (MEX) provides science data from Mars about its ionosphere

and ground subsurface composition. The 3D imagery of Mars has provided the community with unprecedented information about
the planet. Today, thanks to the work of careful and expert operators, Mars Express Orbiter still provides information that
supports ground exploration missions on Mars (Curiosity, Opportunity, ...) and a lot of other research.

Discussion

The Mars Express Orbiter is operated by the European Space Agency from its operations centre (Darmstadt, Germany) where all
the telemetry is analysed. The health status of the spacecraft is carefully monitored to plan future science observations and to
avoid power shortages.

Operators of Mars Express keep track of the thermal power consumption thanks to the telemetry data. The spacecraft uses
electric power coming from the solar arrays (or batteries, during eclipses) not only to supply power to the platform units, but also
to the thermal subsystem, which keeps the entire spacecraft within its operating temperature range. The remaining available
power can be used by the payloads to do science operations:

Science Power = Produced Power - Platform Power - Thermal Power

O
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[Pred] — Collision Risk with Space Debris

Challenge

Data

Submission Rules

Rules

Scoring

Leaderboard

Submission

Discussion

Oct, 16, 2019, 5:03 p.m. UTC Timeline Dec. 16, 2019, 1:35 p.m. UTC

3 weeks 29 minutes and 24 seconds remaining

2.Collision Avoidance Challenge

To manoeuvre or not to.manoeuvre ... that is the question.
*

2 Take Part

Today, active collision avoidance among orbiting satellites has become a routine task in space operaticns, relying on validated,
accurate and timely space surveillance data. For a typical satellite in Low Earth Orbit, hundreds of alerts are issued every week
corresponding to possible close encounters between a satellite and another space object (in the form of conjunction data
messages CDMs). After automatic processing and filtering, there remain about 2 actionable alerts per spacecraft and week,
requiring detailed follow-up by an analyst. On average, at the European Space Agency, more than one collision avoidance
manoeuvre is performed per satellite and year.

In this challenge, you are tasked to build a model to predict the final collision risk estimate between a given satellite and a space
object (e.g. another satellite, space debris, etc). To do so, you will have access to a database of real-werld conjunction data
messages (CDMs) carefully prepared at ESA. Learn more about the challenge and the data.
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[Pred] Radiation Belts crossing
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[Pred] Wind impact in Deep Space antennas
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[Pred] ESA News number of views

[esa.int] Predict which articles will receive a

high number of views

High: Rosetta, comet, surface, lander,
image, crater, mars, stars, galaxy, black
holes

Low: ESA, company, technology
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< EUROPEAN SPACE AGENCY ABOUT US  OUR ACTIVITIES  CAREERS AT ESA FOR MEDIA  FOR EDUCATORS  FOR KIDS

Space news

[STW SPACE NEWS

" OUR MISSIONS

NAME LAUNCH MISSION

BepiColombo 2018

mes Webb Space Telescope 2018

2018 Europe’s closest mission to the Sun

ns
Integrated Applications

+ Preparing for the Future

LATEST NEWS

+ ESA-sponsored Satellites paint a detailed picture of maritime activity
conferences N 8 January 2018
E Elementary, my dear machine intelligence

3 Crater Neukum named after Mars Express founder

Columbus: 10 years a lab
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Let’s stay in touch

= Linkedln: https://www.linkedin.com/in/josemartinezheras/

=  Email: jose.martinez@solenix.ch
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https://www.linkedin.com/in/josemartinezheras/
mailto:jose.martinez@solenix.ch

Discussion
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